• Header people

BiS Members

Jan de Boer

Jan de Boer (chair)

Professor of applied cell biology at TU/e

Jan is interested in the molecular complexity of cells and how molecular circuits are involved in cell and tissue function. With a background in mouse and Drosophila genetics, he entered the field of biomedical engineering in 2002 and has since focused on understanding and implementing molecular biology in the field of tissue engineering and regenerative medicine. His research is characterized by a holistic approach to both discovery and application, aiming at combining high throughput technologies, computational modeling and experimental cell biology to streamline the wealth of biological knowledge to real clinical applications. His research is defined by strong interdisciplinary collaborations through his big network. He is the former chair of the Netherlands Society for Biomaterials and Tissue Engineering and founder and former chair of the MosaCell platform for patient-derived stem cell research. He brought transcriptomics and computational sciences into his research established a data repository cBIT and his current team comprises both experimental and computational scientists. Jan is a full professor at Biomedical Engineering Department, Eindhoven University of Technology (TU/e), chair of BiS, Biointerface Science in Regenerative Medicine since 2018. He was a founding member of the Merln Institute for Technology-Inspired Regenerative Medicine, Maastricht University and chair of cBITE, Cell Biology Inspired Tissue Engineering Lab between 2014-2018 and worked as an associate professor at the MIRA Institute for Biomedical Technology, University of Twente between 2004-2014.

 

Burcu Gumuscu Sefunc

Burcu Gumuscu Sefunc

Assist Prof at TU/e

Bioinspired microfabrication for smart materials

Burcu is a tenure-track assistant professor in the Department of Biomedical Engineering at TU/e. She strives for the development, fabrication, and application of smart biomaterials to realize high-precision processing in high-throughput microfluidic settings. She specifically focuses on the design and development of lab-on-a-chip devices containing hydrogels for diversified life sciences applications. She is also interested in combining data-mining and machine learning techniques with hypothesis-driven experimental research for future research. Previously, she worked as a senior researcher in Mesoscale Chemical Systems Research Group at the University of Twente, where she performed independent research on nano-fabricated arrays for biomolecule analysis. In 2017 and 2018, she was a postdoctoral fellow in the Bioengineering Department at the University of California, Berkeley, where she developed microfluidic biosensors for single-cell analysis. She received her Ph.D. degree in Bioengineering from the BIOS Lab-on-a-chip group at the University of Twente. Her Ph.D. thesis primarily aimed at the design and development of microfluidic devices for next-generation sequencing, organ‐on-chip, and water desalination on the microscale. She is the recipient of the Pieter Langerhuizen grant given in 2019 by The Royal Holland Society of Sciences (KHMW). Burcu serves as a web writer at the Royal Society of Chemistry in collaboration with the development editor of Lab on a Chip Journal, and a review editor in Frontiers in Digital Health Journal. 

ORCID iD iconhttps://orcid.org/0000-0003-4843-4724
Sultan Gülçe Iz

Sultan Gülçe Iz

Researcher at TU/e

Dendritic Cell Migration Engineering via Surface Topographies-aDCMoviE

Sultan is a researcher at Biointerface Science lab since October, 2018. Previosly, she was working as an assistant prof at Ege University, Department of Bioengineering, leading BioTheranostics Lab. With an extensive background on the enhancement of DNA vaccine induced immune responses via antigen engineering, molecular adjuvants and biomaterials, her main research interest is moved towards the overall physiology of dendritic cells (DC) to mount a potent immune response while moving towards lymph nodes and priming T cells. Her research to enhance DC migration capabilities using surface topographies-aDCMoviE- funded by an EuroTech Project grant which is supported by Marie Curie Actions Cofund where researchers from TUe and EPFL work synergistically. Sultan also has an extensive teaching experience in the Bioengineering field and she wants to inspire students to find innovational solutions to biomedical engineering challenges. She is also interested in developing innovative education projects to promote active learning in the classroom and facilitate higher learning cognitive skills using blended learning, challenge based learning and research based learning approaches. Please visit her personal website for more information about her research.

ORCID iD iconorcid.org/0000-0002-9275-6272
Jorge Alfredo Uquillas

Jorge Alfredo Uquillas

Post Doctoral Researcher at TU/e

Jorge has a deep understanding of basic medical sciences, biochemistry, cell & molecular biology, regenerative medicine, and engineering. He is passionate about translating novel medical discoveries in orthopedics, trauma, and neurology to the clinic. For example, over the past 5 years, his team at the EPICS research group at Purdue University has been developing a fully automated CPR device to be used in emergency scenarios in low-income countries. Additionally, he led the regenerative medicine laboratory at Axxis Hospital in Ecuador and held professorship positions in cell/molecular biology, medical biochemistry, biomaterials, and tissue engineering at several universities in Ecuador. He is also very interested in entrepreneurship and medical device innovation. In the past few years, he has spearheaded efforts in Ecuador to organize medical hackathons alongside MIT Hacking Medicine, which are events that put together medical personnel, engineers, software developers, and business people to work on diverse medical problems. He holds a Ph.D. in Orthopaedics Bioengineering from Purdue University and trained as a postdoctoral fellow at Harvard Medical School, the Brigham and Women's Hospital, and the Koch Institute at MIT. His research interests include a) vascularization strategies in tissue-engineered hydrogels, b) regeneration, control of knee arthrosis using growth factors, cells, and drug delivery strategies, and c)mechanotransduction and mechanoinduction of stem cells via natural surfaces.

ORCID iD iconhttps://orcid.org/0000-0003-0731-4312

Nusrat Malik 2

Nusrat Malik

Lecturer at TU/e

Nusrat is a scientist and an educator with experience in multiple disciplines in biology. Following her Master’s degree in Microbiology from University of Karachi, Pakistan, her Ph.D. in cell biology from St. John’s University in New York, USA and her postdoctoral training in cancer biology from Baylor College of Medicine in Houston TX, USA, Nusrat has worked as an educator in many universities around the world. At TU/e Nusrat is combining her broad training in biology with her diverse international teaching experience to develop innovative educational pedagogies to be implemented in the Bachelors and Masters programs of the Department of Biomedical Engineering. Nusrat takes student centered, problem-based, blended learning approaches to design an educational plan that provides future biomedical and tissue engineers the necessary training and tools to become innovators and leaders in their field.

Mehmet Tas

Mehmet Tas

Post-Doc at TU/e

Nanomaterials, Nanofabrication and Characterisation

Mehmet has trained as a materials scientist and joined the Biointerface Science Lab in May 2020. He obtained his PhD from the Advanced Technology Institute at the University of Surrey in the UK. His thesis work focused on designing and understanding multiscale electromechanical behaviour of nanomaterials-based hierarchical micropattern arrays for wearable electronics and biomedical applications. As a postdoc at the TU/e, he is going to design and produce a new generation of micro-patterned glaucoma shunts. He is going to select and fabricate the micropatterns based on ongoing high throughput screens on TopoChip platform developed at the TU/e and optimise the integration between the shunt biomaterial surface and the surrounding tissue. He has expertise in microfabrication, nanomaterials synthesis and advanced characterisation. He is interested in miniaturisation and personalisation of biomedical devices through challenging manufacturing methods and the applications of greater performing novel nanomaterials. 

ORCID iD iconhttps://orcid.org/0000-0003-4688-1678
Ayşegül Dede

Ayşegül Dede

PhD Student at TU/e.

Controlling the tendon fibroblast phenotype by understanding tendon physiology

Ayşegül joined cBITE in February, 2017. In her PhD, she is going to focus on the generation of optimal decellularized 3D scaffolds and application of the mechanical loadings such as stretching to the created scaffolds for mesenchymal stem cells differentiation towards the tendogenic lineage. Further she’s going to investigate the interplay between most optimal surface stiffness, topography, decellularized tendon matrices and mechanical loading that elicit mesenchymal stem cell differentiation towards the tenogenic lineage, and ultimately obtain the ideal tendon transplants. Ideal decellularized 3D scaffolds can eliminate the immune reactions of host tissues to the transplanted tissue which generally happens as a result of native tissue transplants. Moreover, they can be used as ideal transplants since they can reduce the risk or disease transmission from donor to host.

Urandelger (Urnaa) Tuvshindorj

Urandelger (Urnaa) Tuvshindorj

PhD student at the MERLN Institute.

Binary coded, digital biointerfaces – a next generation biomaterials approach with spatially complex subcellular patterns of discrete surface and near-surface properties

In 2009 Urnaa started her bachelor studies in Chemical Engineering at Gazi University (Turkey). During her studies she became interested in material science and started working in the surface chemistry lab. After finishing her bachelor’s degree in 2013, she started her master’s degree in Material Science and Nanotechnology at Bilkent University. During her master she worked on organically modified silica nanostructure based functional surfaces. In 2016 she started a PhD project in Maastricht where she will be developing binary coded digital bio-interfaces with subcellular discrete patterned surfaces using micro- and nanofabrication tools to investigate cell-material interactions.

Kerbaï Saïd Eroumé

Kerbaï Saïd Eroumé

PhD student at the MERLN Institute.

Image-based computational modelling of cell-topography induced cell behavior

With a background in veterinary medicine, Kerbaï obtained a masters in bioinformatics in 2017 from the University of Leuven, Belgium. His research focus was on using several sigmoidal curve modelling approaches for the improvement qPCR within a DNA methylation screening protocol. He also holds a masters in epidemiology from the Institute of Tropical Medicine in Antwerp, Belgium. There, as he puts it, “his passion for the quantitative aspects life sciences” was ignited. His research aimed at using multiple correspondence analysis for food safety.

He joined cBITE in September 2017 and his research mainly focuses on investigating the spatio-temporal aspects of mechanotransduction pathways via combined life-cell imaging and computational modelling. Computational model validation via several perturbation tests in which specific pharmacological inhibitors are investigated both in-silico and in-vitro, constitutes an important component of his research. It is expected that fundamental insights into the mechanotransduction pathways could lead to controlled interactions at biomaterial-cell interface. Moreover, via optimal topographical design of biomaterial surfaces this could unlock novel opportunities for improved implant surfaces.

Phani Sudarsanam

Phani Sudarsanam

PhD student at TU/e

Topographic approach to address the problem of foreign body response in glaucoma drainage devices

Phani  comes from southern part of India where he did his bachelors in biotechnology in 2011. He got interested in the inter disciplinary scope of the field while working at a company where he was a part of the project to test active drug efficacy from different phytochemical plant extracts for anti cancerous activity. In 2013, he started his masters in university of Tuebingen (Germany) in biomedical technologies where he took implantology as one of his specialization with focus on biomaterials which really fascinated him. As a part of his thesis, he did his project titled “In-vitro evaluation of small molecules for anti microbial activity in gram negative bacteria” which focuses on the characterisation of active hits from high throughput screening. As a part of his Ph.d, he will be focusing his research on performing high throughput screening of topographies to address the fibrotic response in glaucoma shunt devices used in treatment of glaucoma to reduce the intra ocular pressure. The objective of the project is to develop surface topographies with anti-fibrotic properties that can avoid implant failure.

Katinka Klap

Katinka Klap

PhD student at TU/e.

Katinka started her bachelor applied biotechnology in 2013 after which she continued her studies with a Biotechnology master at Wageningen University and Research. With the specialization Molecular and cellular biotechnology her research focused mostly on the molecular and cellular workings of Arabidopsis thaliana. In 2020 she started her PhD researching the synergy between signal transduction and mechanotransduction at the university of Eindhoven at the Biointerface science group of Jan de Boer.

Contact

  • BiS-Biointerface Science in Regenerative Medicine
  • TU/e Department of Biomedical Engineering
Eindhoven University of Technology
PO Box 513
5600 MB, Eindhoven
This email address is being protected from spambots. You need JavaScript enabled to view it.
Website
Cookie & Privacy Statement